Nature of Light and Laws of Geometric Optics

- The nature of light
- Reflection
- Refraction
 - Index of refraction
- Huygens' Principle
- Dispersion and Prisms
- Total Internal Reflection

The Nature of Light

- Light as Particles
 - Tactile Theory (Ancient Greeks)
 - Emission Theory (al-Haitham)
 - Newton
- Light as Waves (ω, k)
 - Huygens
 - Maxwell
- Quantum Theory (E = hf)
 - Photons

Fizeau's Method for Speed of Light Measurement

$$\omega = 27.5 rev/s \qquad t = \frac{\theta}{\omega} = \frac{1/720}{27.5} = 5.05 \times 10^{-5} s$$

$$N_{teeth} = 360$$

$$d = 7500m$$

$$c = \frac{2d}{t} = \frac{2(7500m)}{5.05 \times 10^{-5} s} = 2.97 \times 10^8 m/s$$

Ray Approximation in Geometric Optics

Reflection

Specular Reflection

Diffuse Reflection

$$\theta_1' = \theta_1$$

Double Reflection

Refraction

$$\frac{\sin \theta_2}{\sin \theta_1} = \frac{v_2}{v_1} = \text{constant}$$

Concept Question

Suppose the sprinters wish to get from point Q on the beach to point P on the parking lot as quickly as possible. Which path takes the least time?

- 1. a
- 2. b
- 3. c
- 4. d
- 5. e
- 6. All paths take the same amount of time.

Index of Refraction

$$n \equiv \frac{\text{Speed of light in vacuum}}{\text{Speed of light in medium}} = \frac{c}{v}$$

Going from one medium to another, the frequency of light does not change but its wavelength does.

$$\frac{\lambda_1}{\lambda_2} = \frac{v_1}{v_2} = \frac{c/n_1}{c/n_2} = \frac{n_2}{n_1}$$

If one of the medium's is vacuum (n=1), $n = \frac{\lambda}{\lambda_n}$

Snell's Law of Refraction

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

Light Propagation Through a Slab

$$\sin \theta_2 = \frac{n_1}{n_2} \sin \theta_1$$

$$\sin \theta_3 = \frac{n_2}{n_1} \sin \theta_2$$

$$\sin \theta_3 = \frac{n_2}{n_1} \frac{n_1}{n_2} \sin \theta_1 = \sin \theta_1$$

$$x = \frac{h}{\cos \theta_2}$$

$$d = x \sin \alpha$$

$$\alpha = \theta_1 - \theta_2$$

$$d = \frac{h}{\cos \theta_2} \sin(\theta_1 - \theta_2)$$

Huygens' Principle

Huygens' Principle Applied to Reflection and Refraction

$$\sin \theta_1 = \frac{A'C}{AC}$$
 $\sin \theta_1' = \frac{AD}{AC}$

$$A'C = AD$$

$$\theta_1 = \theta_1'$$

$$\sin \theta_1 = \frac{v_1 \Delta t}{AC} \qquad \qquad \sin \theta_2 = \frac{v_2 \Delta t}{AC}$$

$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{v_1}{v_2} = \frac{c/n_1}{c/n_2}$$

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

Dispersion and Prisms

 $n = n(\lambda)$

: angle of deviation

Measuring n Using a Prism

$$\theta_2 = \frac{\Phi}{2}$$

$$\theta_1 = \theta_2 + \alpha = \frac{\Phi}{2} + \frac{\delta_{\min}}{2}$$

$$\sin \theta_1 = n \sin \theta_2$$

$$\sin\left(\frac{\Phi + \delta_{\min}}{2}\right) = n\sin\left(\frac{\Phi}{2}\right)$$

$$n = \frac{\sin\left(\frac{\Phi + \delta_{\min}}{2}\right)}{\sin(\Phi/2)}$$

Angle of Deviation

$$\delta = (\theta_1 - \theta_2) + (\theta_4 - \theta_3)$$
$$\delta = \theta_1 + \theta_4 - (\theta_2 + \theta_3)$$

$$\theta_2 + \theta_3 = \alpha$$

$$\delta = \theta_1 + \theta_4 - \alpha$$

Total Internal Reflection

Critical Angle, θ_c

$$n_1 \sin \theta_c = n_2 \sin 90^\circ$$

$$\sin \theta_c = \frac{n_2}{n_1}$$

Only for $n_1 > n_2$

View From a Fish Eye

$$\sin \theta_c = \frac{n_2}{n_1} = \frac{1}{1.33} = 0.752$$

$$\theta_{c} = 48.8^{\circ}$$

For $\theta < \theta_c$: The fish sees above the water

For $\theta = \theta_c$: The fish sees the shoreline

For $\theta > \theta_c$: The fish sees the pond bottom

Applications of TIR

Retroreflector

Periscope

Fiber Optic Cable

For Next Class

- Reading Assignment
 - Chapter 36: Image Formation
- WebAssign: Assignment 13